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Abstract

This short workshop paper gives a brief overvieweafent research activities conducted by the Urban
Planning Group aimed at integrating activity-baseadels of transport demand and models of land
development. In particular, the integration of ABSITE and ALBATROSS are discussed. A
recent new research projects focuses on uncertainty modeling in complex model chains. The
results of this project will have implications for the integration with land use as well.
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1. Introduction

A main stream of research in the Urban Planningu@rg concerned with modeling travel demand,
developing original activity-based models. The miosportant of these is Albatross (Arentze and
Timmermans, 2000, 2004, 2005), a fully operaticaalvity-based model, developed for the Dutch
Ministry of Transport, which simulates for every i individual which activities are conducted
where, when, with whom and the transport modeslit@eh subject to a set of spatial, temporal,
spatio-temporal and institutional constraints. Thiedel system has been upgraded and expanded
occasionally. For example, over the last couplgezrs, the system has been calibrated on the new
national travel survey of the Netherlands, whileaddition the complete model was re-engineered to
better reflect all household-level decisions thapact travel behavior. The latest Albatross-related
project is to make the model available on the Weld ® systematically conduct an uncertainty
analysis of the model (e.g. Rasouli, Arentze amdifiermans, 2010).

A new line of research on demand generation is@ored with the development of dynamic
models of activity-travel demand. Whereas Albatrisssoncerned with a typical day, te new model
system will simulate changes in activity-travel tpais along different time horizons, Most of this
work will be conducted in the context of the U4l d. Timmermans et al., 2010), sponsored by the
European Research Council (2 postdocs and 6 Phiersts), but additional funding has been required
via other channels.

Work in the Urban Planning Group related to thegnation of the demand forecasting models
to land use dynamics has been conducted in thexiooft the Albatross system. This overview paper,
which is compiled and updated from a series of iptes/publications, describes some key concepts
and models that are relevant for the workshop. drtiqular, the overview starts with a summary
description of the latest developments in the uageweb enabled version of Albatross and then
continues with a description of a model, called ABSITE? that attempts to link an activity-based
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model of transport demand to a model of land usegl as part of a wider multi-agent system, which
simulates how planning agencies, developers arilitfgoviders develop land.

2. Albatross and UncertWeb
2.1 SUMMARY OF ALBATROSS

Albatross, acronym for A Learning Based TranspataOriented Simulation System, was developed
for the Dutch Ministry of Transportation, who desitito develop an activity-based model alongside
their state-of-the-art tour- based model LMS. Alba$ uses a sequential decision process to generate
daily activity schedules of individuals in the cexit of a household. Generated activity schedules
describe for a given day which activities are cantdd, when (start time), for how long (duration),
where (location), with whom, and, if travellingirsvolved, the transport mode used and chaining of
trips. Albatross consists of various components$ geaform specialized functions in the scheduling
process. Figure 1 portrays the different partsystesn. A formal description of the components will
be provided in the following sections.

The Scheduling Engine

The core component of the system is the Sched@imgine. This component controls the scheduling
process in terms of a sequence steps. Various ntementhe process require decisions and
information about options and conditions for dewisi The scheduling Engine identifies which
condition information is relevant for the Decisibimit, activates the appropriate analytical and-ule
based models in the Inference System to obtainnfieemation, and translates decisions returned by
the Decision Unit to appropriate operations on ¢helving schedule. The scheduling engine uses
functional specification of both Inference Systenu dahe Decision Unit but does not need to know
how inference and decision functions are defined.

Figure 2 shows the structure of the assumed sthgdprocess. As the scheme shows,
Albatross uses a priority-based scheduling proedsse mandatory activities are scheduled first and
discretionary activities are scheduled next. Furtisee, timing and trip-chaining decisions have
priority over location decisions and location dewis in turn have priority over transport mode
decisions. Albatross uses a relatively detailedssifgation of out-of-home activities (Table 1),
whereas in-home activities are not further difféis@ed. A day and a household is the unit of
prediction in the Albatross model. Activities aghsduled on @ontinuous time scale and temporal
constraints are respected in the sense that theokdorations across activity and travel episodes o
same person equals 24 hours and no overlaps arsdbgdyveen consecutive episodes can occur.
Timing and duration decisions are modelled as oowtis choices, at least for fixed activities. For
flexible activities discrete duration classes anslibdivision of the day in episodes are used. Eo th
extent that some flexibility is left given trip- @iming decisions and space-time constraints, tlaetex
start time of a flexible activity within a chosepigode of the day is set randomly.

The Decison Unit

The Decision Unit incorporates for each step in diobeduling process a set of decision rules
representing conditional preferences of individugiin constraints regarding decision option. An
inference engine, which selects and applies theogpiate rules to arrive at a decision upon a qoéry
Scheduling Engine is built-in. We emphasize thdy éme calculation of (possibly) relevant condition
variables and decision options are defined in ttognam code of the system. The rules connecting
condition variables and decision options are exteto the system and loaded from data files. This
means that users have the possibility to use agjdicdependent rule-bases. A rule-base is theubutp
of the second fixed component of the Decision Ueierred to as the Learning Mechanism. As the
name suggests, this component derives rules frota based on principle of inductive (i.e.,
supervised) learning. In the present system thepooent is applied in a pre-processing stage exdterna
to the system. In this process a set of decisieestfor making scheduling decisions is extracteohfr
data. In the following section the procedure airaedetting decision rules will be explained.
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Figure 1: Architecture of the part of the system concerned with the derivation and application of the
activity-scheduling model (note: obser ved schedules are used only in a testing phase)
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Figure2: Main stepsin the scheduling process

Table 1: Classification of out-of-home activitiesin Albatr oss
Out of home activities
Work

Business

Bring or get

Shop one store
Shop multiple stores
Service

Social

Leisure

Touring

OO N0 |WIN|F

Decision Trees and Decision Rules

The rule-based approach underpinning the concegédigion tree is based on the theory that human
decision making, in case of repetitive choice béraand large solution spaces, relies on heuristics

which are formed and continuously updated basedexperiences, rather than on exhaustive

evaluation of solutions. Choice behavior that eragrigom learning is driven by individual dependent

condition-action rules. In general format, a coiodiaction rule can be described as:
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if C;O0CSOC, 0CSO ... OC, O CShthen choose alternativig (1)

whereC; represents condition variabl€s$, the condition state of thieth variable in thé-th rule and

A the choice generated by tkeh rule. In this notation, a condition state ipresented as a subset
ofthe domain of the condition variable. If the citiwh variable is of a nominal measurement scale,
then it may specify any subset of the domain. ;naghase of an ordinal or metric variable, on theioth
hand, the condition state specifies a certain sigeraf the variable’s domain.

To make sure that a rule set is able to respondvésy situation, it must meet requirements of
completeness and consistency. A model is consideoedplete if at least one rule responds and
consistent if no more than one rule responds toyepessible combination of values of condition
variablesC;. These properties are guaranteed by the way tmaitg mechanism operates in the
model. Consider an initial situation where the walial has no a-priori knowledge of the domain.
Decision-making would be purely random and handled single ‘rule’:

if C;OCD,0C,0CD,0 .... O0C, O CD,, then choose random (2)

whereCD, represents the domain of condition variaBle Since every ‘condition state’ in this rule
equals the entire domain, each variable in effeatreélevant. Therefore, every possible state imse

of C; will trigger the rule implying that the model meethe requirements of completeness and
consistency. Now assume that through interactigh thie environment the individual has learned to
discriminate between states on some condition bariarhis can be represented by splitting the
domain of that variable into two states so thatitiitel rule is replaced by two new rules:

if G, 0CD,0C,0CD, 0 ...0G0OCS, O.... 0C,0CDythen choose Al 3
if C;OCD,0C,O0CD,0O ... 0GOCS O... OC,OCDythen choose A2 (4)

Because the new condition states were achievegliiirsy a domainCS, O CS, = CD; andCS§; n

CS; = O, the new model still meets properties of complessnand consistency. This process of
splitting could be repeated endlessly resultingnoreasingly complex models while maintaining the
required properties. Any set of rules that can btioed by recursively splitting condition states
starting with an initial rule of above format me#ie formal definition of a decision tree as foratetl

by Safavian and Landgrebe (1991) and vice versa.

The decision trees used in Albatross are empiyicitived from choice observations in activity gliar
data using a CHAID-based induction method. The @firthis method is to find the smallest tree that
best explains a sample of choice observations Ipyoaess of recursively splitting the sample on
attribute variables. A Chi-square based test afifigance is used to identify in each cycle of the
process the best possible way of (further) spiitticross available attribute variables. The saee tr
construction process is also used when the cha@idable is a continuous variable (i.e., start temel
duration choices). Then, an F-statistic is useglviluate possible ways of splitting. To make sheg t
non-systematic variance is reproduced in predistiddbatross uses a probabilistic action assignment
rule and Monte Carlo simulation to generate densidn Albatross, attribute variables used for each
decision relate to the individual, the househdié, $pace-time setting, the current state of thedzdb
(also the one of the partner, if any) and choiteraatives. This means that decision trees represen
segmentations in terms of socio-economic variables space-time setting variables simultaneously
with decision rules used within these segments.

The data used for obtaining decision trees in #msign of Albatross we currently use in Uncertweb
project are from a travel-survey in 2004 named MQWbbiliteitsOnderzoek Netherlands). This
national travel survey data set involves 45000viioidials.

Having derived a decision tree for each choice tfattee next question becomes how to derive
decisions from trees for prediction. Consider gpoese variable that ha3 levels and for which
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CHAID produced a tree witK leaf nodes. In the prediction stage, the treeseduo classify new
cases to one of th€ leaf nodes based on attributes of the case. Aonsgpassignment rule needs to
be specified that defines a response (decisiongdoh classified case. In many other applicatidns o
decision trees, a plurality rule is used. This agsigns the modal response among training cases (i
the sample used for developing the tree) at anledé. A deterministic rule like this may yield thest
predictions at an individual level, but fails topreduce residual variance (if any) at leaf nodes in
predictions. Given our modeling purpose, we, thaefuse a probabilistic assignment rule instead.
According to this rule, the probability of seleditheqg-th response for each new case assigned to the
k-th node is simply given by:

fq
Piq N, (5)
wheref,, is the number of training cases of categgrat leaf nodek and Ny is the total number of
training cases at that node. This rule is sensiiiveesidual variance, but fails to take scheduling
constraints into account. Scheduling constraintaikthat dependent on individual attributes ane th
state of the current schedule some choice alteesafor the decision at hand may be infeasible. If
such constraints are represented in the decisieg, tthe probabilistic rule would assign zero
probability to infeasible categories and the respadistribution should not be biased. However, even
though it is likely, it is not guaranteed that theuction method discovers constraint rules in data
Therefore, to cover the general case we needitterefle (5) as:

0 if qis infeasible

— f
Pg = 1—X__ otherwise (6)

> fra

whereq' is an index of feasible alternatives for the dem at hand. Even though this rule may work
well in practice, it may produce slightly biasedtpes at an aggregate level that should be noted.
That is to say, the rule tends to over predictoasps that are feasible in the majority of casethéa

leaf node), because the probability of these resgois increased by rule (6) in constrained caseés a
stays the same as (5) in unconstrained cases.

Inference System

To compute possibly relevant conditions and avditglof decision options, the Inference System
consists of a collection of built-in analytical afayic-based models representing basic knowledge
about the transport and land-use system and scéhgdednstraints. Unlike the decision rules, the
inference model is a fixed part of the system ity the assumption that the knowledge it conveys
is basic and does not vary across individuals eirenments. In particular, the incorporated models
implement dynamic constraints to determine the lalsgity of decision options in each step of the
process, such as for example whether or not awitgdits in a given time slot given required trave
times, minimum duration of the activity, possibbeations for the activity, opening hours of facekst
and so on. Information flows between the InfereBgstem and Decision Unit pass through and are
controlled by the Scheduling Engine. Hence, boghRkcision Unit and Inference System do not need
scheduling-process knowledge. The following sectiescribes different types of constraints which
Albatross takes into account in the scheduling @sedy the Inference System.

(1) situational constraintsimpose that a person, transport mode and othezdsdd
resources cannot be at different locations atahgestime.
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(2) institutional constraints such as opening hours, influence the earliest latebt
possible times to implement a particular activity.

(3) household constraintssuch as bringing children to school, dictate whparticular
activities need to be performed and others canaqteoformed.

(4) spatial constraintsalso have an impact in the sense that eithercpdati activities
cannot be performed at particular locations, oividdals have incomplete or incorrect
information about the opportunities that particutaxations may offer.

(5)time constraintslimit the number of feasible activity patterns tine sense that
activities do require some minimum duration anchlbe total amount of time and the
amount of time for discretionary activities is lietl.

(6) spatial-temporal constraintare critical in the sense that the specific ircéon
between an individual's activity program, the indival’'s cognitive space, the
institutional context and the transportation enwinent may imply that an individual
cannot be at a particular location at the righetim conduct a particular activity.

The implementation of situational, household andpteral constraints is straightforward. So here an
example of spatial-temporal constraint determiniogation choices is explained: A locatidnis
considered feasible if the following two conditicere met:

OG,g0G{ a(n) } (7)

T =T @) 2V () ®

where,ris an index of activities in a given sched8J&5, is the set of known facility types at locatign
G{ a(7} is the set of facilities compatible with activitied type a(7), vmi“(r) is the minimum
smin
g

schedule and opening hours of facilities. The lagens are formally defined as:

duration andT, and Tlfmaxdefine the time window for the activity dependemt the current
*]

T, ") = maxg (7 TN (7 -1 + (1)} (©)

TS (r) = min{g t1, To"(7 +1) -t/ (7 +1)} (10)

max

min
wherey U, and 4 U,

are the known opening and closing times of faeditdf typeg at location on

Smax

dayd, T fmin is the earliest end time ari the latest start time of the previous and nexviagt

respectively anct|t is travel time to the activity location using theoae chosen in a previous step.

Earliest start times and latest end times of d@tviare calculated by shifting previous activitessfar
as possible to the right on the time scale and aefivities as far as possible to the left within
temporal constraints.

22UNCERTAINTY-ENABLED ALBATROSS MODEL

The original rule-based Albatross does not consigerertainty. However, it has become clear that
uncertainty analysis is important from a policy nmak point of view; especially for complex
comprehensive models. Uncertainty in forecastimgrezan be attributed to two basic sources: input



Arentze, Rasouli and Timmermans 8

uncertainty and model uncertainty. Input uncertaistconcerned with the effect of uncertain input
data, due to measurement error or to scenario taegt, on the ultimate forecasts of the model. In
contrast, model uncertainty consists of two typésmor: specification error and calibration (or
estimation) error. Specification errors result frarfailure of the researcher to identify the trueded,

a simplification of the model or the statisticabtdibution of random components. Estimation error
involves error in estimating the values of vari@asistants and parameters in the model structure. If
we have some confidence in the specification ofrttuglel, estimation error can be determined by
standard statistical procedures. Assessing thetefé specification errors is more challenging.

Considering input uncertainty for all inputs invetl/in Albatross is not possible since there areshug
numbers of inputs involved (i.e., data of the tpors and land-use system and population). The
approach which was chosen is considering unceytaimtinputs which are believed to be more
important and contributed the most in variability tbe results. Considering all types of model
uncertainty is also not necessary because, for ghearthe probability of model failure to predict
travel is not considered because it was alreadgddsy goodness-of-fit analysis at the nationatlev
So in terms of model uncertainty the structure djafross in terms of decision trees is considered
certain and uncertainty analysis is performed wahard to the randomness involved in predictions
obtained from the probabilistic decision tree cheic

Albatross has 27 decision trees for deciding aldifferent facets of activities. Starting from
scheduling work and other fixed activities to thensport mode of flexible activities. Albatross sise
Monte-Carlo simulation for getting the responseach decision of each individual. That is why each
case might choose different responses in eachidedi®e in different runs. Accordingly, different
runs of the model would result in different outpatso on the level of the more aggregate indicators
Analyzing Albatross several times to compare thsulte and report the confidence interval or
standard error is necessary. This type of modekmiainty or variability will be considered in
Uncertweb.

Input uncertainty is related to data fed into tHbatross as input. The amount of information ingut
not bigger than in other large-scale transport nedheit is nevertheless large, so it has been
categorized into 3 main groups:

Sampling bias and uncertainty in travel data

The first type of input uncertainty in Albatrossght arise due to the sampling bias. The model uses
the 2004 national travel survey MON to obtain ttexision trees. These data are obtained from
guestionnaire administered through the whole ofNBtherlands. In these paper-based questionnaires,
the people were asked to first write down theiivitiial and socio-economic characteristics and then
report their activities during two consecutive dayke first issue here is that experience shows in
such surveys some groups might be under reportedodiheir unwillingness to take part in the survey
or not having the time to complete it. The othauésis the mistakes the respondent might make in
reporting characteristics or activities, or alse teople turning the paper-based questionnaire into
computer-based might introduce some mistakes. Hemwew interactive computer system was
developed to test the logical consistency and cetapéss of activity diaries, still some types of
uncertainty analysis based on sampling bias setinastéave. The reason is the program could identify
errors that incur logical inconsistency (for exaemplperson younger than 16 years of age repoding t
have driving license). Therefore random samplingmirthe original sample (MON) using the
bootstrapping method with new samples in the aimtgssee the effect of changes in sample on the
output would be useful. To discriminate between ehaghd this input uncertainty, the simulator
random number seed should be kept constant. Howetveome stage it would be interesting to
consider both types of uncertainty together.

Uncertainty in Land-use data

Land-use data is input as an indicator of desbnatttractiveness in Albatross. These data are
obtained from other sources and have some unciriaiit. All of these data could be considered for
uncertainty analysis. However uncertainty in sorh¢hem is believed to induce more variability in
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results. One of them is number of employees irnydglbds retailing. The reason is that in most cases
this activity appears in the schedule and consdtyueariability in it would significantly affect th
travel-demand prediction results. The probabilitgtribution for this data could be obtained by an
expert elicitation tool. With Monte-Carlo simulatioa set of new land-use data base would be
developed and each of them is used separatelgiAlthatross process. To prevent the effect of model
uncertainty in different runs, the random numbedseeeds to be kept constant across different runs.
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Figure3: Crucial linksin Rotterdam for travel time uncertainty

Uncertainty in Travel time

Travel time data related to private forms of tramsgcar and bicycle) is extracted from an existing
road network datafile. In this file, link speed megents an average flow speed on the concerned link
throughout the day according to expert assessntetitealevel of individual links for main roads.
Albatross also uses travel delay factors for thening peak and one for the evening peak, both based
on the national model system. Considering uncestdor average speed at which most travels take
place would be necessary. The expert elicitatiah again could be used for getting the probability
distribution. However considering all links for shtype of uncertainty is impossible. In case of
Rotterdam, 6 main links were selected after coimgulivith some experts. These links are shown in
Figure 3. Similar to the land-use process, thus gehew travel-time data will be developed andcheac

of them will be used as input in different runstioé model. Again the random number seed will be
kept constant.
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The latest development in the Albatross systero @llbw a systematic uncertainty analysis. Results
will become available at the level of (i) travelpdand indicators, (i) OD matrices, (iii) networlatfic
flows, and (iv) individual space-time trajectories.

2. Integrating a facility location model and a model of activity-travel patterns

Work has been conducted to integrate the Albatsyssem with a facility location model, called
ABSOLUTE.

Scope of ABSOLUTE

To define the scope of the model system it is el make a distinction between three types of
urban facilities. These include housing facilitiggpductive facilities and consumptive facilities.
Whereas productive facilities, such as offices amdistrial plants, provide places for the work
activities of individuals, consumptive facilitiesuch as stores, parks, schools, post offices, etc.,
provide the locations where individuals can condweisumptive activities. Below, we describe some
ideas used in modeling consumptive facilities. ®thegoing work is focusing on simulating the
dynamics of other facilities from a lifecycle pegstive.

On the demand side, individuals schedule theivities and execute their activity schedules on a
daily basis. The schedule determines which aawiire conducted where, when, for how long and
the transport mode used, on a continuous time .s€alethe supply side, firms and/or the planning
authority decide on where to develop how much ofctvi{consumptive) facilities to support those
activities. Whether a firm or the planning authpoperates the facility depends on the type ofifgci

To model and micro-simulate the dynamics we useulti4fagent system approach. The agent
model does not represent the supply-side actorgidhully. Rather, the objective of the model is to
represent behavior accurately at the group levelaAonsequence, the rules used by the agents do no
necessarily represent objectives of each actovishaklly (such as, for example, profit maximizatjion
and should be evaluated on their ability to predidtomes related to each facility type. The object
of the integrated system is to predict emergendadility location patterns and facility usage patis
that are consistent with behavior of all the actiongolved. This means that a time path is not
predicted.

Key principles and notation

Let there be given a plan area, represented agudaregrid of cells that are considered the unfts o
location, a zoning plan for the area determinirgatiowed facility types in each cell and a pogalat
with known home and work locations. The system ukesfollowing classifications and allocation
variables:

is the set of land-use types distinguished ingikien zoning plan;

is the set of activity types distinguished by iniduals in scheduling their daily activities;
is the set of demand types requiring a (consurapfacility of some sort;

is the set of (consumptive) facility types;

is a smaller set of more aggregate demand typethe following referred to as demand
sectors

9 is the probability that activitg involves a demand of typg

P’ is the probability that individuals use heurigito select a location for purpoge

Up is the subset of land-uses allowing facilitiesygfe b 00 B (U, O U);

Gn is the subset of demand types covered by fatilityH (G, O G);

Hp is the subset of facilities belonging to sedi¢H, [ H).

WIO>C

Throughout the text we will use the same symbakter to demand and supply as they both relate to a
same service provided by the facility. As impliedthese definitions, we assume that there does not
necessarily exist a one-to-one correspondence batweheduled activities, on the one hand, and
facility types, on the other. Rather allocationacfivities to facility types is conducted in thestgm

by Monte Carlo drawings from probability distriboiPy* for a given activitya. We emphasize that
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not all activities inA require a (consumptive) facility. Examples of eitiiés that do not require a
consumptive facility include social activities carted at the own or someone else’s home and work
activities. Also worth mentioning in this regarcegricking up/dropping off persons or goods. These
activities may involve a visit to a (consumptivagifity location without occupying floor space biet
facility and therefore do not classify as a constivepactivity meaning thal,” is equal to zero for
eachg for those activities. On the other hand, an atgtiguch as green recreatia considered
consumptive even though it may not require a figcii a more narrow sense.

Once the demand is established for a given actofity given individual, the optional facilities for
the activity are defined by seiS,. Note that the model does not assume that a eordo
correspondence necessarily exists between demamtidaailities. Rather, a single facility may
combine different types of supply and supply $&tsnay overlap between facilities. This provides the
flexibility to represent a large variety of exigiifacility types in urban systems. The allowed s/pee
discussed in more detail later.

In addition, the system uses the following variakile describe the study area at any moment in
time:

P is the probability that activitg is conducted on a given day by a given individual;

Py is the probability that a given individual has demdg on a given day;

2 is the probability that a given trip with purpageriginates from (home, work, other activity
locations);

U is the land use of cdll(defined by the zoning plan)

Sh is the size (square meter floor space) of fadiiy celll;

Vig is the average number of visits per day to Icft satisfying demand;

Ni is the number of individuals visiting locatidrior purposéa (residential, working, visitors of

certain facility types) per day;

ProbabilitiesP, are not set by the user, but rather follow from dlativity-scheduling model. Note that
the following relationship exists:

Pg = Za F)ga (11)

Furthermore note that tH&° probabilities sum up to one acrader eachg. WhereU, is given by the
zoning plan,S;, represent the outcomes of suppliers’ decisions\4nd\; represent the aggregate
result of individuals’ decisions. As implied by tdefinitions, the present system uses the perical of
day as the unit of time and, consequently, doestal congestion conditions into account. The
continuous time scale on which schedules are dkfimeuld allow a further (unlimited)
disaggregation of time so that an extension indlraction is possible.

The supply structure of facilities

Before describing the behavior of individuals ang@iers it is useful to make a distinction between
several facility types regarding their supply stame as defined b,. Elementaryfacilities support
only one activity Mixed andhigher-orderfacilities are facilities that incorporate mulgptlementary
facilities. They differ regarding whether or noeyhsupport also activities not covered by elemgntar
facilities. A higher-order facility does have un@gsupply, whereas a mixed facility does not offer
more than a collection of elementary facilities ldooffer (it just brings them under the same ro#x).
typical example of a mixed facility is a health eaenter combining elementary facilities such as a
physicist, pharmacy, physiotherapist and possilityromedical services that can also be provided by
individual facilities. A typical example of a higherder facility is a district shopping center that
includes the supply of a neighborhood shoppingereand in addition offers supply not included in
this facility.

Behavior of individuals
Each individual of a study population is represérds an agent in the model. The behavior of each
individual agent consists of scheduling activiteesd executing the schedule on a daily basis. In a
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prototype of the system, a version AfBATROSS is incorporated as a method in each individual
agent to accomplish this. As explained earlier, d@iven day, the model determines which activities
are conducted where, for how long, when, and,afel is involved, the transport mode used taking
into account schedule constraints, some socioeenanvariables, day of the week and residential
location. In-home activities are not further difatiated. Thus, an activity generated can be destri
as:

e= (@t v, t'm (12)

wherea [ A is the activity typet® the start timey the durationt' the travel time andh the transport
mode of episode The activities conducted by the same person mast the temporal constraints:

Zma, (v, +1!)=24x60  Odp (13)

tS+v, +t, =t3, Didp (14)
where time is expressed in minutes, is the schedule of a perspron dayd, defined as an ordered
set of activity episodes, amd1 is the activity succeedirgin Eq,. We emphasize that constraint (13)
is a logical constraint: since the activity-baseodei predicts the activities for a day, they shdiild
into the time frame of a day.

The agents make location choices for out-of-hopt®ities in the sequence in which they occur
in the schedule. The schedule defines for eacliigcthe transport mode used for the trip to the
activity location and the travel time. Predictedvtl times refer to the duration of the trip, brg a
interpreted here as the time the individualigling to travel. The origin location is given by the
location of the previous activity in the sequente.a consequence of trip chaining, the origin limcat
of an activity does not need to be the home lonatds it appears, in a substantial portion of ttipe
origin location is not the home location.

The combination of origin location, maximum trawehe and transport mode determines the
locations that are within reach. Before a choidecaa be delineated for a given activétythe demand
type is determined by drawirggfrom probability distributiorP,®. Then, the choice set is defined as all
locations (cells) within reach containing supplyFor making a choice, the agent then determines a
location selection heuristic. In the prototype ewst only two simple heuristics are considered as
alternatives, namely choosing a cell at random @mbsing the nearest cell. We emphasize that in
combination with the choice-set delineation and aledrselection rule, the heuristics give rise toenor
complex behavior than one would expect at firshisi§or example, the model could select the nearest
highest order location within a maximum travel tigea result of a certain combination of rules.

Selecting a location in this way may fail, howevemely when a facility of the given order is not
within reach. If selection fails then the agenedriseveral ways to overcome the impasse. First, it
lowers the demand by accepting also facilities tfédr the lower-order service. If this fails, lHen
relaxes the travel time constraint and searcheswider area for facilities. In this way, the agerit
always find a location for the activity, unlessaaifity of the demanded type or a lower-order @ftth
type does not exist.

Behavior of suppliers

For each demand sectdr [l B) the system implements an agent, which is condewith developing
and maintaining a network of facilities of typls. In turn, each of these agents incorporates one or
more subagents specialized in a specific facilipetinvolved in that sectoh (d Hy). An agent at the
sector level co-ordinates, where needed, the actibiit’'s subagents, but leaves all tasks involved
developing and maintaining the network to the spizeid subagents.

The methods available to each subagent addrepsdhiems of assessing the value of a given cell
for developing a facility unit and making locatiatecisions based on this assessment. If the
(sub)agents would have unlimited knowledge of ttivily and location choice of individuals, they
would be able to predict exactly the amount of dedna new facility in a specific cell would attract
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and how much demand would be distracted from exgstompeting facilities. However, in the model
as well as reality, suppliers have only limited Witexdge about the behavior of individuals and,
therefore, have to rely on estimation methodshkmodel it is assumed that, regardless of facility
type, all agents perform a catchment area anallystbis method, a primary and secondary catchment
area is defined by drawing concentric circles atbthe site. Next, the demand attracted from each
cell within the circles is estimated taking intocaant the location of existing competing facilities
Catchment area analysis is a well-established rdetn¢he retailing sector We emphasize, however,
that the assumption here is more encompassing.séieree that location choice of supply-side agents
in general can be modeled as if the decisions ased on a catchment area analysis. This is
exemplified by the fact that parameters of the meéthan be estimated based on commonly used
facility-planning guidelines and statistics..

The specific characteristics of facilities are rmmkledged by a set of parameters including the
following:

X is the maximum cannibalism tolerated for a fagidif typeh;

S is the minimum normative floor space size (squraeger) for facilityh to be viable;

is the normative floor space size (square met@rpit demand for added supplyhpf

is the radius of the primary and secondary catchraeea of added supply bfrelated to

segment;

7w, M is the penetration rate of added supply of factiin the primary and secondary catchment
area related to segment

I,.hl,i’ r.hZ,i

5 is the extra demand attractedhtdf the nearest main road lies within thth distance band
fromh;
Vi is the extra demand attractechtt the city center lies within theth distance band frofm

Given these parameters, a catchment area anaftaislishes the value of a given location based on
the following equation:

Qn =AQ,, +Qy (15)

where Qy, is the estimated value of cellfor facility h, Anghis the estimated value of the added

supply, g,, of facility h andh' is the (next) lower-order facility di. Note thatQy' is recursively
defined by the same equation, so that, for exanfiptea three-order facility the equation would read
as:

th = Angh + Angh. + AQIghu (16)

As implied by this equation, the market value egubhe sum of market values across the constituent
supply layers. In cagehas no lower order, the second term on the RH&joétion (15) is simply set
to zero. The value of added suppdy=g,) is defined as:

AQ, = Ziv|é +Vg +Vyg 7)

where theV terms represent the estimated number of visitmswould be attracted to locatibfor g

from home locationsi(= 1), work locationsi(= 2) and other activity locations [0 B) within
catchment areas and the last two terms represemagss of additional flows from a main roag (
and city centerd), respectively. The last two terms are determineal straightforward way based on
parameterd/,” andV;". On the other hand, theterms are all estimated based on a catchment area
analysis. The method for this can be described as:

Vig =R*P, . 71 (N, (18)
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where, as beford?? is the probability that a givegrtrip originates from activity location Py is the
probability of ag-demand by an individual on a day; is the number of people present in ¢efbr
purpose on a day andrgi(l') is the probability of attracting those peoplé for satisfying demand.
The rrterm represents estimated penetration rates Imaad is defined as follows:

;) if I'DPCA OI'DPC,
X1 if I'DPCA OI'DPC Od(I")<d”
() = (1—)()n;~‘ if I'DPCA OI'OPC Od(')>d" 19)
’ 057 if 'DPCA OI'DPC, Od(I')=d"
! if I'DSCA
0 otherwise

wherePCA and SCA are sets of cells defining the primary and secondatchment area of dg-
facility, PC is the union of the primary catchment areas o€athpeting facilities (fog), 0< y< 1is
a loss in penetration due to competitiokl,) is the distance betwednand!l' andd™ is the current
nearest distance to a competitor (if any) frorgh not included). In this equation, the catchmenasgre
are defined based on radius parameters specifihiéosegmenit This represents the notion that, for
example, people may consider a larger radius filgstination when they are at home than when they
are at the work location, and so on. The equatiothér represents several simplifying assumptions
typically made in catchment area analysis: pernietraiutside the secondary catchment area is zero,
the presence of specific competitors is taking iat@ount only in overlapping areas pfimary
catchment areas and penetration does not decaydigiidnce within the same catchment-area shell
(primary or secondary).

As implied by equation 19, cannibalism accountedoccurs only in overlapping areas of primary
catchment areas. Consistent with equation 19,dtimated size of cannibalism is calculated as:

Vip™ =R7Py ZVDPCAnPQ 7' Ny, (20)

However, in site assessment, the value of cansibalelative to a total market potential of the gte
relevant rather than the absolute value. Total pigoktential is conceptualized as the size of deiman
attracted according to (18) if there were no coiitipat Hence, it is calculated as:

o _ . 2
Vlglx = Pig Pg (ZI'DPCA ”;I Nl'i + I0SCA ﬂg I Nl'i ) (21)
Then, the cannibalism ratio is calculated as:
V i,ca

]

Equations 15 — 22 reflect our assumptions aboutithieed knowledge suppliers have about the
system and in particular the behavior of individudlhe radius and penetration parameters all tefer
location choice of individuals. Yet, the choicetbé values of these parameters is based on expertis
of the suppliers rather than on direct informatmmn the decision rules of individuals. The chosen
values are best guesses based on long time experden recordings of actual penetration rates. On
the other hand, thid andP terms represent aggregated results of micro-lédgeisions of individuals.
We assume that knowledge regardi®gterms is accurate, i.e. consistent with actuaviggtchoice
probabilities in the population, whereas knowledggardingP?® is tentative, as data of the latter
variables is more difficult to obtain. Finally, @gling theN variables we assume that the agents have
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accurate data about the residential populationptipeilation at work locations and the size of éxgst
facilities in all demand sectors. So, where they oaserveN for housing and employment, they
derive estimates of facility visitors volumes basedactual facility sizes.

The optimal size of a (possible) facility is dexivfrom the (estimated) number of visitors. The
method can be written as:

Sh =4S, +S, (23)

whereS, is the optimal size of facility in cell |, AS*ghis the optimal size of added suppty, of

facility h andh' is the (next) lower-order facility df. This equation has the same structure as equation
15. Similarly, the optimal size is found as the sofmoptimal sizes across the supply layers
constituting the facility. The optimal size of addgupply is defined ag € gn):

AS, =0V,

gVlg (24)
wheredy is a normative floor space size per visitor per d@adV, is the number of visitors per day as
observed or estimated (using equation 18) deperatinghether the facility is currently operating or
not.

The general objective of each agent is to deval®pnany facilities as possible within several
feasibility constraints. First, a facility must b@ble according to the rule:

AS, =S, OgOG, (25)

For mix facilities this constraint is applied toetloverall facility level instead of the added-syppl

level. Consequently, a mix facility may be feasibleen if one or more of the elementary facilities
offering the constituent services would not be if#das In this way a mix facility can benefit from

economies of scale. Second, the cannibalism induoyehe facility must be tolerable according te th

rule:

Xo < Xg Og O Gy (26)

whereS;” is the minimum normative size of added sugply

The sector-level agentsB) are responsible for making location decisions.eseh agents
continuously monitor the study area for opportesitio open new outlets. Hereby, they consider
facility types (in their sector) in a certain orda#grpriority, which is a parameter in the modelviag
priority to higher order facilities, generally, widwbe in line with the objective to develop theglest
possible facility network in a sector. Having sédekcthe facility type, an agent considers a cell fo
possible development only if the land use in tHeallws the type of development and there are no
existing facilities competing for the same demamdhie cell. Given these cells, the agent seleds th
cell maximizingV,, within constraints (15) and (16) and opens a itadlf optimal size according to
(13) at the site. This process is repeated untienaf the cells turns out to be feasible. Then ntet
facility type in the priority order is considereddathe same process is repeated for this facditg, so
on.

In addition to a priority order on subagent letke system also uses a priority order on the highe
demand-sector level. In a monitoring stage, thorsflows are known and each (sector level) agent
reconsiders the size and evaluates the viabilitgxidting facilities within their sector. A closure
indicated when the optimal size has dropped bel@wntinimum. The agents do not close more than
one outlet at a time, to avoid the risk of closmgre outlets than is necessary. Closing an outlet
generally improves the market conditions for otxtlets competing for the same demand. Therefore,
a facility that is not viable in the current timeeg may become viable in the next time step if a
competing facility is closed. Giving higher prigrito maintaining larger outlets, an agent ranks
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currently unviable outlets first on their order arekt on their performance, and, then, closes thieto
with the lowest rank. The agents of the differesmttsrs implement such adaptations simultaneously
assuming that possible cross effects between secdorbe ignored.

3. Conclusions and discussion

This compilation of papers has summarized somentgmegress in the development of the Albatross
model system and how the simulated predicted #gdiravel patterns can be linked in the context of
an agent-based model with a model of land developmEhe focus of the latter has been on
consumptive facilities, but similar research oriceffdevelopment has been completed recently. Future
work will (i) complete the uncertain-web enabledsien of Albatross, (ii) allow a link with the
dynamic based activity-travel demand system cuyremder development, (iii) also develop this
model under conditions of uncertainty, and (ivegrate (dynamic) activity-travel demand with agent-
based simulations of land development and lanctharges, expanding the system to various types of
land use.
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